Data Science for Construction, Architecture and Engineering
|
سر فصل های دوره
|
شماره فصل |
سر فصل اصلی |
سر فصل فرعی |
مدت (ساعت) |
۱
|
v Introduction and Orientation
v Python Fundamentals |
· Overview of Course
· Data Sets Overview
· Overview of the Data Sets and Applications in the Course
· Explanation of the Tools: Python, Pandas, and Colaboratory Notebooks
· High Level Overview
· Colab Introduction Video by Google
· Introduction to Colaboratory
· Starting with Notebooks
· Python Variables and Operators
|
۲
|
۲
|
v Python Fundamentals (Control – Statements – Functions- Libraries)
v Real World Data Science Tools and Applications
|
· Control Statements
· Data Types
· Python Functions
· Python Libraries
· Python Data Structures
· Quiz 2 (Python Fundamentals 2)
· Explanation of Real World Data Science Tools and Applications
· Introduction to build Environment Data Science Characters
· SDE4 Case Study Introduction |
۲
|
۳
|
v Design Phase Data Science Overview
v Pandas library Fundamentals |
· Design Phase of the Building Industry
· Introduction to the Pandas Library and its Functions
· Introduction to Case Study
· Pandas Data Frame Object
· Pandas Flies Input Functions
· Selecting Subsets of Data from Data Frames
· Introduction to Plotting with Pandas
|
۲
|
۴
|
v Application Example (Simulation Data Processing)
v Design Phase Real World Data
v Science Tools and Applications
|
· Pandas Concatenate Function to Combine Data
· Making a New Column and Function
· Comparison of Design Options
· Debugging Problems and Using Stack Overflow
· Design Phase Data Science Characters
· Rhino and Grasshopper Platform
· Generative Design
· Ladybug Tools for Performance Simulation
· Revit Python Sell Production
· Energy Plus Automation
· Design Builder and IESVE Python
· SDE4 Case Study- Integrated Design Process
|
۲
|
۵
|
v Construction Phase Data Science Overview
v Analysis of Time-Series IoT Data |
· Introduction to the Building Data Genome Board
· Pandas for Time Series Overview
· Introduction to Building Data Genome Project
· Loading Time-Series Data Using Pandas
· Time-Series Objects in Pandas Data Frame
· Time-Series Frequency Resampling Function
· Time-Series Analysis Truncation Function
· Visualizing Patterns in Time-Series Data
|
۲
|
۶
|
v Normalization and Weather Data Analysis
v Construction Phase Real-World Data
v Science Tools and Applications |
· Building Energy Data Normalization Process
· Energy Comparison OF Group of Buildings
· Removing Outliers in Time-Series Weather Data
· Merging Weather and Energy Data
· Construction Phase Data Science Characters
· Building Commissioning Process
· Getting Time-Series IoT/BMS Data from REST API
· BRICK Metadata Scheme for Buildings
· Digital Fabrications and Robotics
· SDE4 Case Study (Energy and Comfort Systems)
|
۲
|
۷
|
v Operation Phase Data Science Overview
v Pandas Statistics, Reshaping and Visualization Functions
|
· Operation Phase of the Building Industry
· Pandas Visualization and statistics
· High Level Overview
· Introduction to Thermal Comfort Data
· Pandas Statistical Descriptor Functions
· Pandas Aggregation Functions
· Pivoting and Reshaping Functions
· Grouping Functions
· Box Plot Visualization
· Scatterplot and Histogram Visualization
|
۲
|
۸
|
v Analysis of Thermal Comfort Data in Building Operations
v Operation Phase Real-World Data Science Tools and Applications
|
· What Makes People Feel Comfortable?
· What Personal Factors Contribute to Comfort?
· Does Location of the Study Have an Impact?
· Operation Phase Data Science Characters
· Occupant Feedback Case Study
· Case Study 1
· Case Study 2
· Operation Phase Discussion
|
۲
|
۹
|
v Overview of Introduction to Machine Learning (ML) for Buildings
v Machine Learning Introduction and Unsupervised Clustering
|
· Machine Learning and Prediction for Buildings
· Python ML Library – Scikit Learn Introduction
· High Level Overview
· Introduction to Scikit- Learn Library
· Unsupervised ML Introduction
· Daily Load Profile Generation
· K-Means Clustering of Daily Load Profiles
|
۲
|
۱۰
|
v Supervise Machine Learning for Regression and Classifications
v Machine Learning Real-World Data Science Tools and Applications |
· Introduction to Regression
· Regression for Hourly Prediction
· Introduction to Classification prediction
· Random Forest Machine Learning Model for Classification
· Classification Performance Metrics and Visualization
· Machine Learning Characters
· Kaggel Machine Learning Platform Overview
· ASHRAE Great Energy Predictor Competition
· Machine Learning Application Discussion
· Conclusion and Tips for Keep Learning
· Final Discussion board |
۲
|
دیدگاهها
هیچ دیدگاهی برای این محصول نوشته نشده است.